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tion (4.1) changes them proportionally. Moreover when the perturbation deviates from 
its worst mode, the fictitious initial time t* ixxreises and this leads, by virtue of (4. l), 
to decrease in the values of a’ and k’. Thus the network of parameter a’ (or k’) repre- 
sents a decomposition of the segment [0, (T - t,*)a], where to* is a fictitious initial 
time corresponding to the initial conditions of the problem, 

In this manner, the initial correction problem which has, in the case of a constant in- 

tensity,eight parameters x0, ya, T, a, k, p, Q and n is reduced, by means of trans- 
formation (4. l), to a problem with four parameters a’, k’, Q’ and n. Thus a synthesis 
of a correction for a real object requires only n one- parameter (cc’ or k’) relations 

t1’ W. 
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Particular kinds of periodic solutions in unison - quasi-normal oscillations simi- 

lar to those of an oscillator - are separated in conservative multidimensional 

systems. A new definition of normal oscillations, more precise than known ones 

is proposed. It is applicable to a wider class of nonlinear systems. A method of 
appro~ma~ de~rmination of quasi-normal oscillations for a particular kind of 
nonlinear systems is described and some examples are presented, 

In [l, 23 the supposition was made that singular analogs of characteristic solu- 
tions, often called normal oscillations, can exist in the class of nonlinear conser- 
vative systems of the form s”i = $U / azi, U (0) = 0, V (-x) = U (r) and 
X = {zr,z~, * * ., xn}. It was assumed that normal oscillations are determined 
by the following characteristic properties: oscillation frequencies of all coordi- 
nates are equal, all coordinates attain their maximum deflection and vanish si- 
multaneously, and the displacement of coordinates at any instant of time is a 
single-valued function of one of these. 

From the physical point of view the above definition of normal oscillationshas 
the follo~ng sho~corn~~: the c~rac~r~tic properties of normal oscillations 
are noninvariant under the change of the coordinate system. are interdependent, 

comprise a narrow class of nonlinear systems, and do not permit the formulation 
of the problem of determining normal oscillations. 

In this paper the concept of normal oscillations of nonlinear systems is extended, 
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a new definition of strictly normal oscillation is presented, and the algorithm 
for determining quasi-normal oscillations is formulated for the class of strongly 
nonlinear systems which is of practical interest, 

1. Qurrf-normal orcillrtlon8, Let us consider a conservative system with 
Lagrangian L = L(z, x’), x = (31, .a*, s,} that is continuous over the set of argu- 
ments and has cutouts partial derivatives up to the third order. We assume that 

#O (&=Lv~*), i,j=l,...,n 

Further restrictious that can be c~venien~y formulated for the Hamiltionian H = w(s, 
p> are given below. 

The equations of motion 
Pi’ = L?Zi (X.2) 

are extrema of the functional xitlf 

i Ldt 
4io) 

(1.3) 

whose variation consists of two parts: the integral extended over the given interval and 
of the boundary term 

6%(r’) Ldt = “5”f: (p; - L,J hi (t) dt + 5 pi&q 1;: 
40~ X(f*) i-1 i=l 

In problems of the theory of oscillations it is usually assumed that variation is carried 
out for fixed boundary conditions and 6xi = 0. However the boundary conditions that 
determine periodic solutions, in particular the normal oscillations are not a p r i or i 
known. The separation of normal osciflations is based in [l] on the adoption of certain 
properties of trajectories, as a whole, that are specific for normal oscillations of linear 
systems. Another possibility of extending this concept consists of an appropriate selection 
of limits of integration in (1.3). 

Definition 1. We call quasi-normal oscillations the solutions of Lagrange equa- 
tions that satisfy the reasonable boundary conditions 

The ~rnult~e~s vanishing of generalized momenta in two noncoincident instants of 
time are the mathematical expression of the intuitive idea of motion in unison, In linear 
systems quasi-normal oscillations coincide with normal ones, if all natural frequencies 
are incommensurable, otherwise quasi-normal oscillations constitute a parameteric set 
which comprises the strictly normal single-frequency oscillations. 

Let us establish some of the properties of quasi-normal oscillations. 
The energy integral II (5, p) = la determines surface n in the phase space 45 3 (2, 

p). We denote in the space of configurations E 3 (z, 0) the surface defined by 
H (s, 0) = h by M . We assume that sets m*and Af* bounded by surfaces n and 
M are compact and connecting, The following statement, whose validity is based on 

simple geometrical considerations, is used below, 
S t ate men t 1, If the orthogonal projection of m* on E belongs to M*, then any 

trajectory of the dynamic system belongs to M*. 
Here and subsequently the trajectory is understood to be the projection of the phase 
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trajectory onto the region of the space of E*configurations. 
Conservative systems whose H~~lt~i~ satisfies the above ~q~rnen~ are wide- 

spread. As a possible example we adduce a system with the Hamiltonian N=U*(Z) -f- 
T (x, p), T > 0 for p # 0 and T = 0 for p = 0. Dynamic systems of this kind 
are an extension of SyStfXnS considered earlier in [l] . 

The condition pi (to) = 0 is equivalent to the following: at some instant of time I!, 
the extremum of functional (1.3) intersects surface M, At that intersection point the 
condition of ~an~e~a~i~ must be satisfied. We formulate this property of trajectories 
in the form of a statement, 

Statement 2. The normalized vector of generalized momenta is orthogonal to 
surface M, i.e. H. 

Iim$=li*$, pi40 (1.4) 
zi 

Formula (1.4) can be established without resorting to the formalism of variations by 
extending it to systems of the more general form 

pr’ (x, cc-, 0 = LSi (% t’, 0 + Qr (2, x’, t) 

Applying the 1’Hospital’s rule, we write 
0 Lzq + Qi 

lim$=lim$-=limL +Q Pi -+ 0 
Xl 1' 

(1.5) 

For Q1 = 0 formula (1.5) reduces to (1.4). This becomes clear, if we take into ac- 
count that by virtue of (1.1) the relationships pr = Lxi* are solvable for xt’ and L =c 

2 Pi”1’ - H, and that by exchanging the sequence of operations of differentiation and 
of passing to limit we obtain the equality of the right-had parts of formulas (1.4) and 
(1.5). 

Corollary. The dynamic system trajectories do not intersect surface &f. This co- 
rollary follows from Statement 2 and conditions of smoothness of L which ensure the 
uniqueness of grad H. 

Statement 3. Quasi-normal oscillations are periodic solutions whose trajectories 
intersect M at two different points. 

Let us assume the opposite. Let to and tl (to < tI) be consecutive instants of time 
at which the quasi-normal trajectory that entirely belongs to region N* (Statement 1) 
intersects its boundary M. By assumption tl is the salient point of the quasi-normal 
trajectory, which contradicts the corollary. 

By analogy to linear systems the motions of a multi-dime~i~al conservative nonlinear 
system along each quasi-normal trajectory can be interpreted as oscillations of an oscil- 
lator. 

Let us assume for simplicity that E is Euclidean, i.e. that p = SC’. We select the 
direction of circumvention and determine the metric along the curve in E as the dis- 
tance of the running point from some point (the reference point) of the curve, 

S t ate me n t 4, Only a quasi-normal trajectory is homeomor~c to a closed seg- 
ment in the topology induced by the metric on the curve. 

The homeomorphism of the quasi-normal trajectory to the segment is evident. The 
trajectory of aperiodic nonquasi-normal solution (because the equalities xi* = 0 are 
not satisfied simultaneously) must be a closed curve in E that is not homeomorphic to 
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the segment ; the trajectory of a nonperiodic solution is noncompact , and also nonho- 
meomorphic to the closed segment, 

It can be intuitively appreciated that oscillations of an oscillator differ from other 
motions, for instance of rotation in that the oscillating motion is periodic and that at 

peak points the velocity is zero. These properties are equivalent to the single condition 
that the trajectory of the oscillating mode is homeomorphic to the closed segment. Hence 
only quasi-normal oscillations in multi-dime~ion~ conservative systems can be inter- 

preted as oscillations of an oscillator. Moreover, it is not possible by a tr~sformation of 

coordinates to separate in nonlinear systems one or several equations (related to motions 
along quasi-normal trajectories) unconnected with the remaining ones. 

Let us illustrate Statement 4 by a simple example, The derived formulas will be used 
subsequently. It can be readily demonstrated that when the ratios of natural frequencies 
Wi i WI = li of a linear system are integers, the motion trajectory is determined by 

where Tri is a Chebyshev polynomial of the first kind, aj are amplitudes, and cpj are 
phases of the i-th normal oscillation, Substituting (1.6) into the energy integral 

?l 

Formula (1.7) can be considered as the energy integral of the equivalent nonlinear 

oscillator with a variable mass. For xl --, u.,. the “mass” of the e~ivalent oscillator is 
bounded only for quasi-normal oscillation (i.e. for cpi = + kn, k = 1, 2,...). 

Methods of group theory can be used for simplifying the equations of motion and de- 
termining quasi-normal oscillations. In this an important part is played by manifolds 

that are invariant with respect to finite and continuous groups admitted by the equations 

of motion. 
Let a finite group of ~~fo~atio~ G 3 gi be specified. We denote by Sgi the 

representation of G in E (Sgi (xj = x*, x, s* E E). The invariant manifold of group 

G in E is determined by equations 

inv EC: Sgi (4 = x, gt c G 

Statement 5. If L is invariant with respect to a finite group of coordinate trans- 

formations, then the invariant manifold of the group is the integral manifold of system 

(1.2). 
P r 0 0 f , Let us assume for simplicity that function S,, is continuously differentiable 

and that the invariant manifold has the common rank equal N. 
Let us show that the dimension of the Lagrange system of equations projected onto 

inv Et, is N. We carry out the nondegenera~ inflation of coordinates {XX, . . . . 

x,f * {V,, **+, UAV, V&i, *a+, V,} so that the coordinate curves UI belong to inv 
EG, and Vi intersect inv EG in not more than at one point, The nondegenerate trans- 
formations S,? are expressed in new coordinates by 

S;;(v) = u*, $J(U, V) = v*, lJ,v,u*,v* EE E (1.8) 
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Differentiation of these equalities yields formulas for the transformation of derivatives 

The definition of the invariant manifold of the. group implies that 

S$f (U, 0) = 0 

The invariance condition is of the form 

L (l-7, v, u’, V) = L (F, v*, P, v*) 

After computation of derivatives in both parts of this identity 

l3L aL av* 
BV=mav+ 

t3L av-* aL aL av-* 
7-, 
av* av -SF =BV’*F 

we obtain in accordance with formulas (1.8) - (1.10) that dL I dV = 0, ilL/drk 0 
for v = 0 and v’ = 0. 

Statement 5 , an analog of the Noether theorem, remains valid when the invariant 
manifold degenerates into a point which, for instance, occurs with coordinate inversion. 

To find the most complete set of integral manifolds it is necessary to determine the 
manifolds that are invariant with respect to all subgroups of group G. 

Statement 6. If L is invariant with respect to group G., then the set of quasi- 
normal oscillations is also invariant with respect to G. 

This is so because the invariance of L implies the invariance of the equations of mo- 
tion and of boundary conditions (pi = 0) which determine quasi-normal oscillations. 

C or 011 a r y . If L is invariant under coordinate inversion, the set of quasi-normal 
oscilIations is also invariant under inversion. 

Nevertheless separate quasi-normal and, as noted below, a&o normal trajectories may 
not be invariant under inversion and may not pass through the inversion center. An ex- 
ample of this appears in Sect, 3. If the quasi-normal trajectory does not pass through the 
inversion center, then one more ~~-normal trajectory conjugate of the first with respect 
to the inversion center, and, consequently, of the same length can be found. 

The presented definition of the quasi-normal oscillations makes it possible to use nu- 
merical methods of solution of nonlinear boundary value problems for finding such oscil- 
lation modes. Exact solutions which may be obtained for systems admitting a fairly wide 
iFuP - ffdte or continuous - of tran.sformations,can be taken as the initial approximation. 

2, Normal orcillrtionr, If quasi-normal oscillations form a parametric set 
in nonlinear, as well as in linear systems, it is expedient to separate the strictly normal 
oscillations from the former. By analogy with Wear systems a rectilinear trajectory can 
be taken as the characteristic sign of normal oscillations in nonlinear systems. 

Condition (1.5) must be satisfied at all points of the rectilinear trajectory aloug which 
the representing point is moving. This can be used for finding rectilinear normal trajec- 
tories. Substituting zi = aiq + pi and zi’ =: ai%,’ into (1.5) we obtain a system 
of equations in ai and fii which must be identically satisfied with respect to x1 and xi’. 
If L is analytic over the set of arguments, functions x1 and 5’ can be eliminated by 
e~a~ng to zero the coefficients at all powers of z+ and x1*. The system of equations 
derived in this manner can only be consistent for some particular L and Q. However 
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in certain problems interesting from the point of view of analysis, normal trajectories 
are rectilinear and it is possible to determine in this manner the modal constants cli and 

B I’ 
Since the application of the test of the trajectory rectilinearity is limited, the separa- 

tion of normal solutions necessitates the use of more fundamental properties, It can be 
shown that normal trajectories of linear systems have a local minimum length in the set 

of trajectories that intersect ikf. We shall use the similar property for determining nor- 
mal oscillations in nonlinear systems. 

Definition 2. We call a trajectory normal, if it has a minimum local length in 
the set of trajectories that intersect surface M. 

The differential of the trajectory arc length is taken in the form da = v/Zpisi’&. 

Normal oscillations defined in this manner constitute a subclass of quasi-normal (oscil- 
lations), since among solutions that intersect H only quasi-normal trajectories are of 
finite length. Hence a normal trajectory coincides with one of the quasi-normal. 

We assume that E is Euclidean and shall show that rectilinear trajectories (when they 

exist) are normal. For this we consider the functional 

S= 
sl/z 

Xie2 dt (2.4 

on the set of continuous curves with piecewise continuous derivative, whose ends lie on 
surface M. Extrema of this functional are straight lines that intersect orthogonally sur- 
face i%.f. Rectilinear trajectories orthogonal to M are found between these. Thus,solu- 

tions containing rectilinear trajectories yield the extremum of functional (2.1) in the 
set of curves containing the set of quasi-normal trajectories. They consequently also 

yield the extremum of functional (2.1) in the set of quasi-normal trajectories. It is 
obvious that that extremum is, in fact, a minimum. 

Although the quasi-normal and normal oscillations were not explicitly determined, 
we shall prove the existence of related solutions. The proof is based on the theorem 
about the minimum of the lower semicontinuous functional. 

Since all trajectories belong to the compact region M * , we consider functional (1.3) 
on the set of continuous rectifiable curves with piecewise continuous derivative, which 
belong to M*, and whose ends lie on M . It is sufficient [3 - 51 to show that the func- 
tional (1.3) attains its absolute minimum in the described set of curves. The latter ac- 
cording to [3 - 51 takes place if on the curves that determine functional (1.3) L is non- 
negative and det 1 3pi / dzj' 1 > 0 . In conventional problems of mechanics t , a~ the 
difference between two bounded quantities of kinetic and potential energy, is a bounded 

quantity. Since the equations of motion are not affected by the addition to L of some 
constant quantity, hence, without loss of generality, we assume that L > 0. 

Statement 7. If pi are continuous and twice continuously differentiable, L > 0 
and det 1 api / ax; 1 > 0, functional (1.3) attains in the described set of curves its ab- 

solute minimum in tne quasi-normal trajectory. 
Let us assume that the quasi-normal solutions form a parameteric set, that function 

isnonnegative,and det 1 a2Q / dxi’dxj’ 1 > O.Then at least one normal trajectory of 
minimum length exists among quasi-normal trajectories of the set. 
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3, Syrtemr wfth L rmrll prtrmetrr, Let us describe the algorithm for 
de~rrn~~g normal oscillations of the class of non~ear systems whose equations of 
motion are-of the form 

Q (x’-, z’, 4 + EQ (5”, 2*, 5, y”, y’, y, e) = 0 (3.1) 

where 
F (x-, x’, 5, Y”, Y', Y, 4 = 0 

Q = {Ql, . . . . On}, q = (41, en., qn}, 5 = (~11, .-., G}, cc* = 
{G -*a, d) 

F = {F,, . . . . Fm}, Y = {yl, . . . . ym), y’ = {Y;, --.v ym’) 
We assume that for E = 0, y = 0 and F = 0 , and that the equations 

Q (xc”, 2’, 2) = 0 

have a set of quasi-normal solutions which depend on the arbitrary constants 

(3.2) 

x$0) = z&O) (t, c), y = 0, c = (Cl, . ..) c,} 

We have to determine constants c for which the quasi-normal oscillations of the input 
and simplified equations (3.1) and (3.2)” respectively, are asymptotically close. 

The method of small parameter applied to a similar problem involves cumbersome 
conditions of solution periodic&y with periodic coefficients and periodic right-hand part 
[6]. We formulate below asimpler method, based on Statement 2, for determining cons- 
tants c In the case of quasi-normal oscillations. 

Taking into account that y and y’ = 0 (a) do not appear either in the sought solu- 
tion or in the generating equation (3.2), we conclude that the neglect of functions y and 
3’ in (3.1) leads to an error of order E 2. Hence we select c so that for quasi-normal 
solutions of zero appro~mation the boundary condition (1.4) or (1.5) are satisfied with 
an accuracy to within terms of order s2 

lim pi / p1 = lim If,.* / Hsr*, pi + 0 (6 = 27 3* - . * 7 n, 

II = H, + cH1 + . . . . H* = H, + eH, 
(3.3) 

In function H* vector y of order ~2 is equated to zero. Condition (3.3) makes it _possi- 
ble to form a closed system of transcendentalequations that associate constants e. 

Statement 8. Condition (3.3) is sufficient for (the existence of) asymptotic close- 
ness of quasi-normal trajectories in a finite time interval. 

Condition (3.3) ensures an asymptotic closeness of quasi-normal trajectories of Eqs, 
(3.1) and (3.2) at a point of surface M. Iu the compact region M* systems (3.1) and 
(3.2) are 6 -close to each other in the sense of n J . The asymptotic closeness of trajec- 
tories at the origin implies ~ymptotic closeness of these in a finite interval of time that 
contains that point [?I, Hence (3.3) is a sufficient condition of asymptotic closeness of 
quasi-normal trajectories of the input and the simplified systems in a finite time interval, 

In a number of problems the generating solution is a set of straight lines 22 = C&. 
In that particular case formula (3.3) yields the exact solution. 

We present some examples which illustrate the effectiveness of the described method 
and the characteristic properties of quasi-normal oscillations of nonlinear systems. Let 
us write the equations of motion as 

.Xi” + wiazi + Efi (3 = 0, Xk” + Ok%+ + efh. (5) = 0 
z={Ti,...,“,}, i-1,2 ,.,., m, k==m+1,...,n 

(3.4) 
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We assume that the ratios oi / o1 = Zi are integers and that w and wk are incommen- 
surable. Let us determine the quasi-normal trajectories of system (3.4) that are asymp_ 
totically close to quasi-normal trajectories zi = aiTli (x1 / aI) of the linearized system. 
Taking into consideration that Xi’ I XI’ = dxi / dx,, we represent (3.3) as 

’ ‘i ItiT,. 
( i 

- = 
Oi2’i + ‘fi (a) 

for U = h (3.5) 
z at oi++ ef1(a) 

where TJ is a potential function, 
E x a m p 1 e 1, We write the equations of motion in the form 

z1” + 0221 + az1x22 = 0, Cr;* + 40%, + e51%2 - 0 

Equation (3.5) has in this case four solutions 

51 = 0, 52 = 0; x1 = 2x,, tr = -2x2, 

which with an accuracy to within terms of order a2 are the same as the loci of conver- 
gence of quasi-normal trajectories. The first pair of orthogonal straight lines coincides 
with quasi-normal trajectories, while the second determines approximately initial condi- 
tions of the other two ~~-normal trajectories which for not very great h are close to 
parabolic trajectories of the linearized system. 

Results of numerical analysts carried out on a computer using the Rnnge-Kutta algo- 
rithm are shown in Fig, 1 for E = 1 w = 1 and h = 8 . Trajectories of qu~i-normal 

Fig, 1 

oscillations are shown by solid lines, while the dash lines show the trajectories of nonpe- 
riodic solutions that intersect the equipotential curve. 

The trajectory emanating from an arbitrary point of the evidential curve 

l/s (XrZ -t- 4222) + l/s x12z22 = 6 

is not a periodic curve. Trajectories of equipotential oscillations are clearly distinguish- 
able among the nonperiodic solutions whose trajectories are very complicated. 

The error of analytic formulas defining initial conditions of curvilinear quasi-normal 
trajectories is approximately 0.7% for h = 0.6 and 4% for h = G. 
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Numerical analysis of the considered oscillating system shows that the set of quasi- 
normal oscillations is discrete. For such systems (see Sect. 2) the quasi-normal and normal 
oscillations coincide. We have thus determined that in a system whose Lagrangian is in- 
variant under coordinate inversion there are four normal trajectories two of which are 
rectilinear and two curvilinear which do not pass through the inversion center. 

Certain classes of nonlinear systems whose potential is a homogeneous function of co- 
ordinates, are distinguished by the number of trajectories being greater than the number 
of degrees of freedom [l]. However for the considered systems whose potential is not a 
homogeneous function of coordinates and contains a quadratic component, this phenome- 
non is apparently noted for the first time. It occurs when all normal trajectories are rec- 
tilinear. 

Example 2. We write the equations of motion thus: 

51 ** = -&%cl - bs,s,2 - 6X13, xs” = -w%s - bx,%x, - dq3 

From (3.5) we obtain for the four normal trajectories the equations 
- - 

21 = 0, 5.J = 0, q = -t_ hq, h= I/b-e/I/b-d 

Normal oscillation trajectories are shown in Fig. 2 for o = J& b = 4 and d = e = 8 
by solid straight lines, and the trajectories of nonperiodic solutim that intersect the equi- 
potential curve are represented by dash lines, 

Fig, 2 

This example provides a pictorial geometric interpretation. The equipotential curves 
of the linearized system constitute a set of concentric circles whose any diameter coincides 
with a normal trajectory. The superposition of any arbitrarily small perturbation destroys 
the circular symmetry and leads to the appearance of several predominant directionsthat 
coincide with the directions of normal trajectories. Condition (3.5) makes it possible to 
obtain these solutions in an explicit form. 
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Formula (3.5) makes possible the separation of the basic component in the approxi- 
mate representation of quasi-normal trajectories. The solution can be refined by various 

means. For this it is expedient to use the Gale&in method. It is convenient to select the 
coordinate functions in the form of polynomials of space coordinates. Efficiency of the 
Gale&in method is explained by that in zero approximation the shape of oscillationscan 

usually be determined fairly accurately. The unknown weighting coefficients at coordi- 
nate functions are in this case small, which makes it possible to linearize in the first 

approximation the system of transcendental equations that link these. 
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Dynamics of adiabatic motions of a gravitating perfect gas of constant density 
filling a certain ellipsoid is considered in the case when velocities are linear 
functions of coordinates. It is shown that for an adiabatic exponent Y < 4/s the 
spherically symmetric compression of gas into a point is an unstable process. A 
reasonable approximation of the oscillating gas motion under strong compression 
for considerable negative gas energy is indicated. Oscillating mode of expansion 
of a rotating gaseous ellipsoid in vacuum, which obtains also in the absence of 
gravitational interaction between gas particles, is determined. 


